Construction and performance testing of PPAC detectors at RAON

Charles Akers
K.B. Lee, E.H. Kim, Y.J. Kim, H.S. Lee, M.S. Ryu, J.H. Park
Rare Isotope Science Project
Institute for Basic Science
Introduction

- RAON planned to be built near Daejeon by 2021
- Produce Rare Isotope (RI) beam using both ISOL and In Flight methods
- 70 MeV proton cyclotron driver for ISOL system
- 3 super conducting linacs (SCL)
- Combine both ISOL and IF to produce very exotic beams

T. Shin et al., Sae Mulli 66 (2016) 1500-1510
Introduction

- Why do we need a PPAC?
- KOBRA will produce and separate RI beams in flight
- Nucleon transfer ~10-20 MeV/u
- Significant beam impurities expect in this method however
- We must then conduct PID on the beam in flight
- Required intensity of nuclei of interest is $>10^5$ pps
- Beam contaminants 10-100 times more abundant
- If low cross section reactions are to be observed we need detection rate of $>10^6$ pps
Particle Identification

- Bp-ΔE-TOF method
- Bp -> Position detector (PPAC)
- TOF -> Timing detector (Scint., PPAC)
- ΔE -> Energy loss detector (Si, IC)
- This method allows for the identification of many different rare isotopes in a single beam

BigRIPS PID\(^1\):

Required Performance

- Need position information, event by event
- Minimal beam interference
- Position resolution in x and y of <1 mm (FWHM)
- Efficiency close to 100% for low energy heavy ion beams up to 10^6 pps
- Active area up to 40x20 cm2 at F1
- (MW)PPACs only current detectors that can provide all of these
PPAC Concept

- Parallel plate avalanche counter
- PPACs first developed in the 1960s, well known technology
- Three parallel surfaces, metalized Mylar or thin wires form electrodes
- Central electrode biased, forming strong electric field between gap

![Diagram of Parallel Plate Avalanche Counter (PPAC)](image)

- Strong linear electric field
- \(-1-4\) mm gap

\[\text{anode} \quad +V \quad \text{cathode} \]
PPAC Concept

- Pure quencher gas flowed through gap to produce avalanche region
- Reduced field strength of ~15-50 V/mm/Torr
- Electrodes only a few mm apart
- This design allows for a very compact detector
- Also minimizes material in beam path, electrodes and window only a few μm thick
PPAC Concept

- Incident ion ionizes $\sim 10^{2-3}$ primary electrons (n_0) in sensitive gas volume.
- n_0 depends on ion species, energy, gas type and pressure.
- Each primary electron is accelerated by strong field and can cause a secondary ionization event, etc.
- Causes cascade of electron generation; exponential growth.

Townsend avalanche:
$$n_e(d) = n_0 e^{\alpha d}$$
PPAC Signal

- Good timing properties:
- Entire gap between electrodes is avalanche region
- Most electrons formed close to anode
- Fast e- signal have rise times of <10 ns
- Avalanche process degrades energy resolution however, poor ΔE resolution

PPAC signal:

- Fast e- <10 ns
- Slow ion ~1 μs
Current Design

- D. v Harrach and H J Specht\(^1\), and Kumagai et al.\(^2\) developed delay-type PPACs that used fast e- signals for continuous position determination.
- Cathode is segmented into strips, each strip has separate delay.
- Signal split and time difference between pulses gives position information (T2-T1).
- 2 cathodes, orthogonal, give X and Y information.
- Use low tolerance LC elements for good position uniformity.
- 50 \(\Omega\) impedance to match coaxial cables.

\(1\) D. v Harrach and H.J. Specht, NIM 164 (1979) 477-490
\(2\) H. Kumagai et al., NIM A 470 (2001) 562-570
Large PPAC

- KOBRA requires a large detection active area
- We have designed and fabricated a larger PPAC with 20x20 cm² wide Mylar electrodes
- Also fabricated 40x20 cm² cathodes
- To our knowledge, largest area finely stripped evaporated electrodes ever made for PPACs
Electrode Manufacturing

- Previously mechanical mask was mounted before evaporation
- Could not use this method for larger sizes however
- Heat from evaporation distorts mask shape
- Found improved manufacturing method using photolithography
- We may then control the strip pitch to within ~1 μm
- Even larger active area (40x20 cm²) was possible
Testing

- Made ‘Double PPAC’ so we essentially have 2 detectors in a single case
- Beam test with 3 MeV/u ^{12}C and ^{16}O beam
- Up to 2×10^6 pps intensity
- Kyushu University tandem accelerator
- Mounted slit mask for position calibration and resolution
Results

- Used slit mask to calibrate position spectrum
- Width of peaks gave position resolution
- Observed position resolution of 1 mm (FWHM) at beam intensity of 2×10^5 pps 12C
- TOF between layers gave time resolution of 700 ps (FWHM) at 2×10^6 pps 16O
- Very high efficiency: 99% with 2×10^5 pps 12C
 95% with 2×10^6 pps 16O
- Did not use slits with 2×10^6 pps beam, no position resolution measurement yet
Conclusions

- Up to beam intensities of 2×10^5 pps observed high efficiency, 99%, and good position resolution, 1 mm FWHM
- Up to 2×10^6 pps observed detection efficiency of 95%
- New production technique, photolithography, makes the production of larger cathodes possible
Thank you for your attention!